

Technical features, innovations and future direction of smart, scalable, structured wind turbines

Michael Dasey
Goldwind Australia
NZWEA Wind Energy Conference
12th April 2017

Goldwind At A Glance

Since establishing the first wind farm in 1986, our people have spent 30 years as pioneers in the wind energy business.

Goldwind has more than **38GW** of wind turbine generation capacity installed globally.

More than **25,000** wind turbine installed, including **21,000** units using the permanent magnet direct drive (PMDD) technology.

We have successfully listed on **2 stock exchanges**, in Shenzhen and Hong Kong.

TOP 4 OEM in the world by newly installed capacity in 2016

Goldwind Australia

Operations:

Mortons Lane, 19.5MW

• Gullen Range, 165.5MW

White Rock Stage 1, 175MW

> Turbine installation progressing

Gullen Range Solar, 10MW

> ARENA Funded, Under construction

Projects Pipeline:

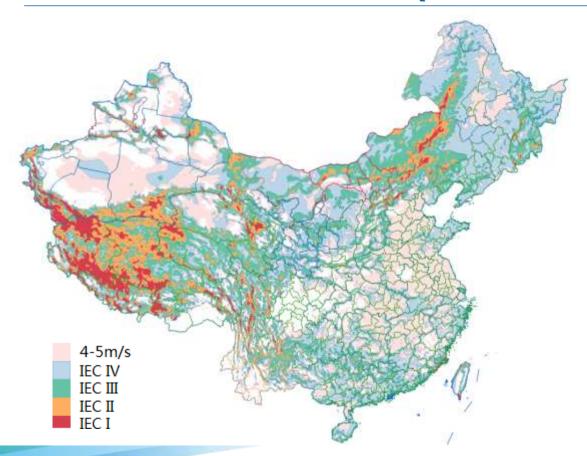
White Rock Stage 2, 49 WTGs

Coppabella, 79 WTGs

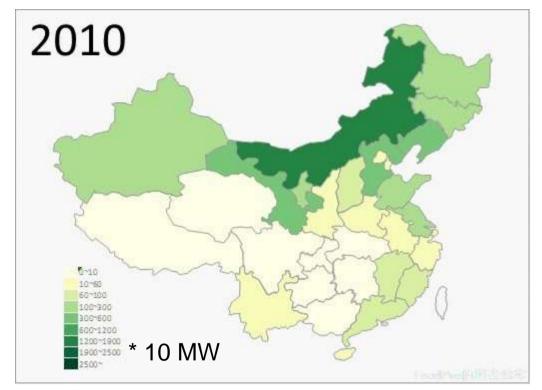
Moorabool North, 50 WTGs

Moorabool South, 57 WTGs

White Rock Solar, 20MW


ARENA Funded

China Market Trends (Resource)



Goldwind has a over 27% Chinese Market Share (a 23GW per year market)

Best wind resource located in Inner Magnolia, Xinjiang, Gansu, Yunnan and the costal area.

China Market Trends (Construction)

(Data from National Energy Bureau).

- Installed capacity evolution of Chinese wind power from 2010 to 2016, and forecast to 2020
- sites becoming scarce in the north.
- Tariffs favor the south.
- Increasing use of Class III and Class IV sites.
- Sites limited;
 - grid capacity
 - high penetration renewables.
 - Limited land
 - Residential areas (noise)
 - Complex terrain
 - Low wind

End of 2016: annual new installation: 23.4GW; cumulated installation: 169GW; Source: CWEA End of 2016: cumulated global: 464GW; (36%) Source: WPM, March, 2017

Increasingly Diverse Sites

Example Project: a project in Hunan province, China Detailed analysis of wind resource data measured by different met masts.

• Group 1003#:

Average wind speed: 5.31 m/s

Wind shear: 0.18

Turbulence intensity: 0.12

Maximum wind speed: 28.4 m/s

• Group 7004#:

Average wind speed: 8.11 m/s

Wind shear: 0.132

Turbulence intensity: 0.133

Maximum wind speed: 35.7 m/s

• Group 7003#:

Average wind speed: 6.93 m/s

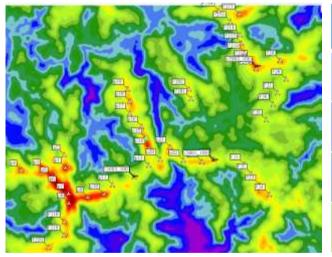
Wind shear: 0.075

Turbulence intensity: 0.144 Maximum wind speed: 33.2 m/s

• Group 3001#:

Average wind speed: 6.5 m/s

Wind shear: 0.114

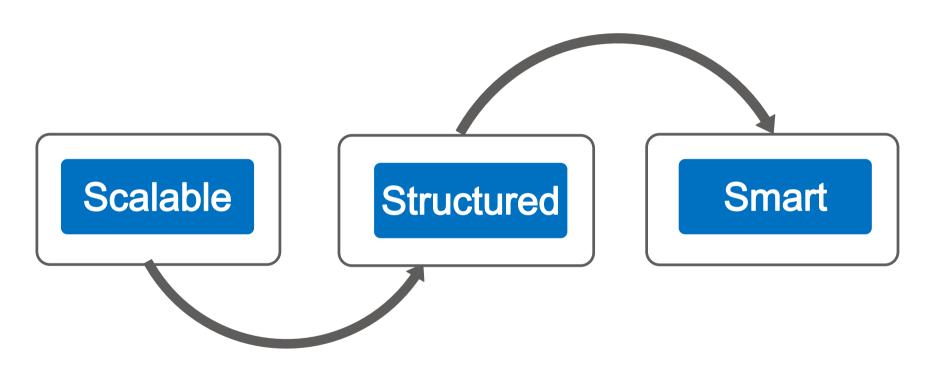

Turbulence intensity: 0.144
Maximum wind speed: 30.9 m/s

ACT CO

Wind Farm Optimisation

The Wind Farm of 40 WTGSs has 6 distinct groups. Looking to maximize the possible WTG capacity for a 20/25 year design life.

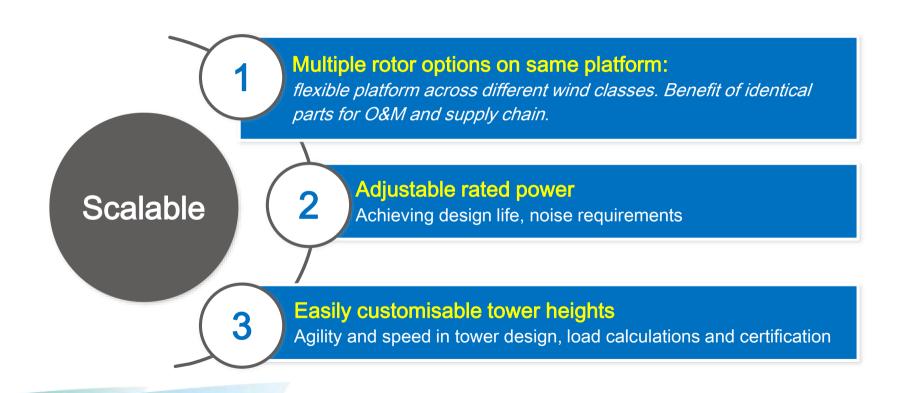
	3000 kW	3200 kW	3400 kW	3600 kW
100 m	Group 7003L	Group 7003H		
100 m			Group 7004L	Group 7004H
100 m	Group 3001			
120 m	Group 1003			

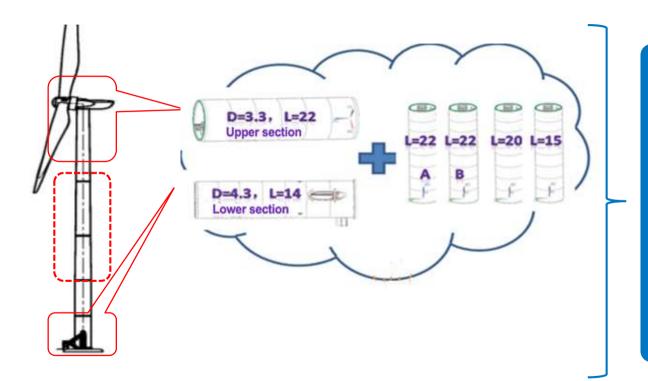

Group	Qty.	
7003H	7	
7003L	5	
7004H	8	
7004L	6	
3001	4	
1003	10	

Optimized hub height and generator size improved the power generation by approx. 7.1% comparing to single turbine configuration across the project.

WTG Design Trends

Goldwind 3S Platform

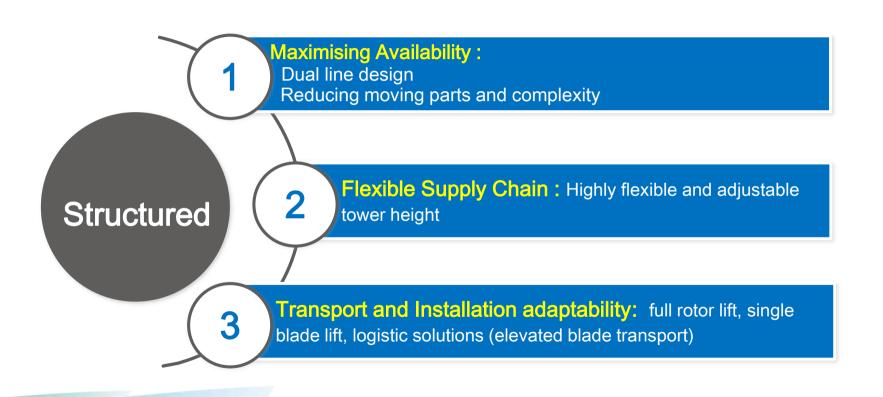



	GW140	
Rated Capacity	3.0-3.57 MW	
Tower	80m - 140m	
IEC Design Class	IEC Class IIIA	
Design Life	25 years	

Scalable

Adaptable approach to tower design GOLDWIND

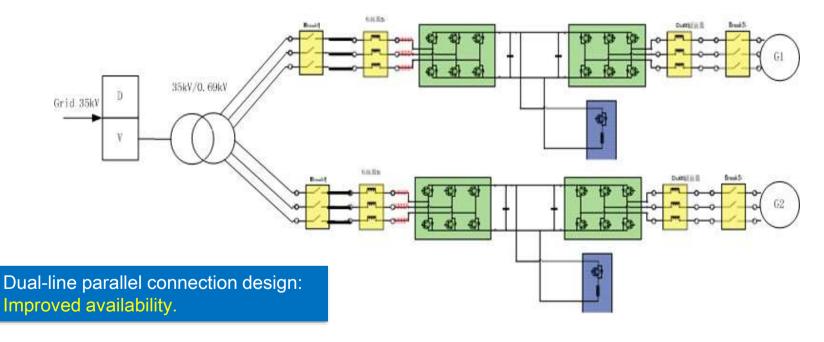
Modular tower design:


 Towers of 100m, 110m, 120m, 130m, and 140m are available by combining the upper and lower sections of fixed lengths and multiple middle sections of different lengths.

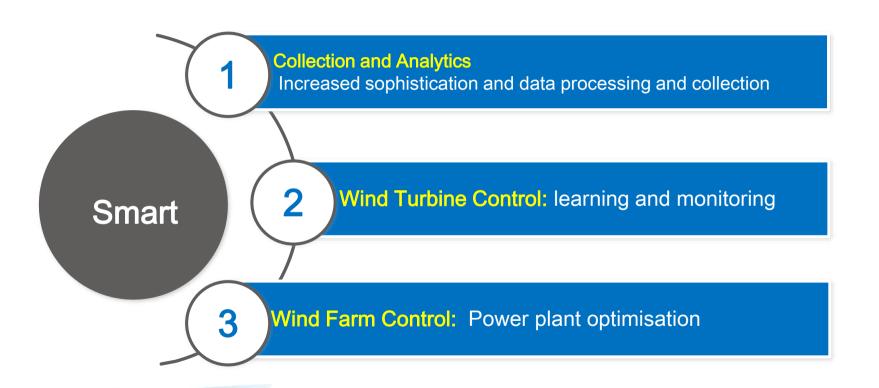
Flexible and adjustable:

 Using towers with flexible adjustable heights reduces costs significantly in various aspects.

Structured



Dual Line System



→ Dual-line design of electrical control system increases the availability and power generation

Smart

Smart: Data Collection and Analytics

Smart: WTG Control Strategies

Power Curve Adjustment

- Noise, temperature, loading,
- Uprating of power curve in times of favorable wind conditions
- Operating in curtailment in high wind speeds.

Monitoring of components (SCADA, CMS)

- Half-power operation mode of converter
- Fault operation mode of generator
- De-rating for protection rather than shutdown where possible

Performance monitoring and AI

- Self correcting yaw misalignment.
- Self adapting control strategy.

WTGS

Flagship Using the key measurement points

- Learning of WTGS model
- Load identification
- Coordinated cluster control

Cluster controller

- Coordinated control of WTGs
- Machine learning and optimal control

Advanced control of single WTGS

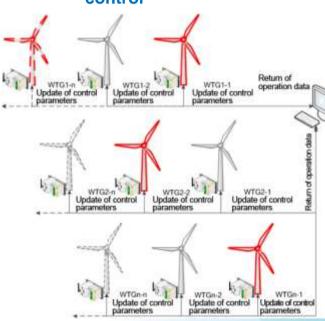
Flexible power control technology of wind farm

Corrective and optimized control

Sector management

Capacity increase control

Yawing for alignment with wind


Optimization of pitch angle

Selfadaptation to complex terrain

Noise control Wake flow control

Load identification

WTGS capacity

Conclusions

- Agility and speed in the wind farm design stage.
- Adaption of WTG performance and design life.
- Responsive and adaptable supply chain to support customized solutions
- Maximization of AEP & Availability
- Data collection, Data Analytics, learning and the feed-back loop.

